919 research outputs found

    A New Method for Characterizing Very Low-Mass Companions with Low-Resolution Near-Infrared Spectroscopy

    Get PDF
    We present a new and computationally efficient method for characterizing very low-mass companions using low-resolution (R ∼ 30), near-infrared (YJH) spectra from high-contrast imaging campaigns with integral field spectrograph (IFS) units. We conduct a detailed quantitative comparison of the efficacy of this method through tests on simulated data comparable in spectral coverage and resolution to the currently operating direct-imaging systems around the world. In particular, we simulate Project 1640 data as an example of the use, accuracy, and precision of this technique. We present results from comparing simulated spectra of M, L, and T dwarfs with a large and finely sampled grid of synthetic spectra using Markov-chain Monte Carlo techniques. We determine the precision and accuracy of effective temperature and surface gravity inferred from fits to PHOENIX dusty and cond, which we find reproduce the low-resolution spectra of all objects within the adopted flux uncertainties. Uncertainties in effective temperature decrease from ± 100–500 K for M dwarfs to as small as ± 30 K for some L and T spectral types. Surface gravity is constrained to within 0.2–0.4 dex for mid-L through T dwarfs, but uncertainties are as large as 1.0 dex or more for M dwarfs. Results for effective temperature from low-resolution YJH spectra generally match predictions from published spectral type-temperature relationships except for L–T transition objects and young objects. Single-band spectra (i.e., narrower wavelength coverage) result in larger uncertainties and often discrepant results, suggesting that high-contrast IFS observing campaigns can compensate for low spectral resolution by expanding the wavelength coverage for reliable characterization of detected companions. We find that S/N ∼ 10 is sufficient to characterize temperature and gravity as well as possible given the model grid. Most relevant for direct-imaging campaigns targeting young primary stars is our finding that low-resolution near-infrared spectra of known young objects, compared to field objects of the same spectral type, result in similar best-fit surface gravities but lower effective temperatures, highlighting the need for better observational and theoretical understanding of the entangled effects of temperature, gravity, and dust on near-infrared spectra in cool low-gravity atmospheres

    The Solar-System-Scale Disk Around AB Aurigae

    Full text link
    The young star AB Aurigae is surrounded by a complex combination of gas-rich and dust dominated structures. The inner disk which has not been studied previously at sufficient resolution and imaging dynamic range seems to contain very little gas inside a radius of least 130 astronomical units (AU) from the star. Using adaptive-optics coronagraphy and polarimetry we have imaged the dust in an annulus between 43 and 302 AU from the star, a region never seen before. An azimuthal gap in an annulus of dust at a radius of 102 AU, along with a clearing at closer radii inside this annulus, suggests the formation of at least one small body at an orbital distance of about 100 AU. This structure seems consistent with crude models of mean motion resonances, or accumulation of material at two of the Lagrange points relative to the putative object and the star. We also report a low significance detection of a point source in this outer annulus of dust. This source may be an overdensity in the disk due to dust accreting onto an unseen companion. An alternate interpretation suggests that the object's mass is between 5 and 37 times the mass of Jupiter. The results have implications for circumstellar disk dynamics and planet formation.Comment: 11 pages, 5 figures, accepted for publication in Astrophysical Journal, V. 680, June 10, 200

    Ideal Stars and General Relativity

    Get PDF
    We study a system of differential equations that governs the distribution of matter in the theory of General Relativity. The new element in this paper is the use of a dynamical action principle that includes all the degrees of freedom, matter as well as metric. The matter lagrangian defines a relativistic version of non-viscous, isentropic hydrodynamics. The matter fields are a scalar density and a velocity potential; the conventional, four-vector velocity field is replaced by the gradient of the potential and its scale is fixed by one of the eulerian equations of motion, an innovation that significantly affects the imposition of boundary conditions. If the density is integrable at infinity, then the metric approaches the Schwarzschild metric at large distances. There are stars without boundary and with finite total mass; the metric shows rapid variation in the neighbourhood of the Schwarzschild radius and there is a very small core where a singularity indicates that the gas laws break down. For stars with boundary there emerges a new, critical relation between the radius and the gravitational mass, a consequence of the stronger boundary conditions. Tentative applications are suggested, to certain Red Giants, and to neutron stars, but the investigation reported here was limited to polytropic equations of state. Comparison with the results of Oppenheimer and Volkoff on neutron cores shows a close agreement of numerical results. However, in the model the boundary of the star is fixed uniquely by the required matching of the interior metric to the external Schwarzschild metric, which is not the case in the traditional approach.Comment: 26 pages, 7 figure

    Astrometric and Photometric Measurements of Binary Stars with Adaptive Optics: Observations from 2002

    Full text link
    The adaptive optics system at the 3.6 m AEOS telescope was used to measure the astrometry and differential magnitude in I-band of 56 binary stars in 2002. The astrometric measurements will be of use for future orbital determination, and the photometric measurements will be of use in estimating the spectral types of the component stars. Two candidate companions were detected, but neither is likely to be gravitationally bound. Nine systems had not been observed in over 40 years. Eight of these are shown to share common proper motion, while HD 182352 is shown to be a background star. One of the two components of the HD 114378 (Alpha Com) is shown to be a variable star of unknown type. In addition, 86 stars were unresolved and the full-width half maxima of the images are presented.Comment: 9 pages, 1 figure, 3 Table

    Region of hadron-quark mixed phase in hybrid stars

    Get PDF
    Hadron--quark mixed phase is expected in a wide region of the inner structure of hybrid stars. However, we show that the hadron--quark mixed phase should be restricted to a narrower region to because of the charge screening effect. The narrow region of the mixed phase seems to explain physical phenomena of neutron stars such as the strong magnetic field and glitch phenomena, and it would give a new cooling curve for the neutron star.Comment: to be published in Physical Review

    Constraining mass ratio and extinction in the FU Orionis binary system with infrared integral field spectroscopy

    Get PDF
    We report low resolution near infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.5" south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J and H band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low resolution near infrared spectrum in conjunction with 10.2 micron interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A_V =8-12, with an effective temperature of ~ 4000-6500 K . Finally we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary syste

    Thermodynamic Properties of Holographic Multiquark and the Multiquark Star

    Full text link
    We study thermodynamic properties of the multiquark nuclear matter. The dependence of the equation of state on the colour charges is explored both analytically and numerically in the limits where the baryon density is small and large at fixed temperature between the gluon deconfinement and chiral symmetry restoration. The gravitational stability of the hypothetical multiquark stars are discussed using the Tolman-Oppenheimer-Volkoff equation. Since the equations of state of the multiquarks can be well approximated by different power laws for small and large density, the content of the multiquark stars has the core and crust structure. We found that most of the mass of the star comes from the crust region where the density is relatively small. The mass limit of the multiquark star is determined as well as its relation to the star radius. For typical energy density scale of 10GeV/fm310\text{GeV}/\text{fm}^{3}, the converging mass and radius of the hypothetical multiquark star in the limit of large central density are approximately 2.63.92.6-3.9 solar mass and 15-27 km. The adiabatic index and sound speed distributions of the multiquark matter in the star are also calculated and discussed. The sound speed never exceeds the speed of light and the multiquark matters are thus compressible even at high density and pressure.Comment: 27 pages, 17 figures, 1 table, JHEP versio

    Instability of black hole formation under small pressure perturbations

    Get PDF
    We investigate here the spectrum of gravitational collapse endstates when arbitrarily small perfect fluid pressures are introduced in the classic black hole formation scenario as described by Oppenheimer, Snyder and Datt (OSD) [1]. This extends a previous result on tangential pressures [2] to the more physically realistic scenario of perfect fluid collapse. The existence of classes of pressure perturbations is shown explicitly, which has the property that injecting any smallest pressure changes the final fate of the dynamical collapse from a black hole to a naked singularity. It is therefore seen that any smallest neighborhood of the OSD model, in the space of initial data, contains collapse evolutions that go to a naked singularity outcome. This gives an intriguing insight on the nature of naked singularity formation in gravitational collapse.Comment: 7 pages, 1 figure, several modifications to match published version on GR

    An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    Full text link
    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade, and are revolutionizing the kinds of science possible with 4-5m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a "waffle mode" wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave front sensor) affects the AO point-spread function (PSF). We model details of AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass.Comment: 15 pages, 11 figures, 1 table; to appear in PASP, August 200

    Compact Stars - How Exotic Can They Be?

    Full text link
    Strong interaction physics under extreme conditions of high temperature and/or density is of central interest in modern nuclear physics for experimentalists and theorists alike. In order to investigate such systems, model approaches that include hadrons and quarks in a unified approach, will be discussed. Special attention will be given to high-density matter as it occurs in neutron stars. Given the current observational limits for neutron star masses, the properties of hyperonic and hybrid stars will be determined. In this context especially the question of the extent, to which exotic particles like hyperons and quarks affect star masses, will be discussed.Comment: Contributon to conference "Nuclear Physics: Present and Future", held in Boppard (Germany), May 201
    corecore